How to Compute Mutation and Dayhoff Matrices


     The alignment of nucleic acid or protein sequences constitutes an important step in many bioinformatics methods. Dayhoff matrices are part of a theoretically sound method for scoring biological sequence alignments. This bio-recipe shows how to compute Dayhoff matrices from mutation matrices and vice versa.

     The way in which Dayhoff matrices are computed is outlined in the above figure. First pairs of aligned amino acids in verified alignments are used to build a count matrix, then the count matrix is used to estimate a mutation matrix at 1 PAM (evolutionary unit). From the mutation matrix, a Dayhoff scoring matrix is constructed. This Dayhoff matrix along with a model of indel events is then used to score new alignments which can then be used in an iterative process to construct new count matrices. This process is continued until convergence.

Alignments

     Alignments can be computed exactly using dynamic programming methods (e.g. Needleman-Wunsch algorithm for global alignments) that compute alignments maximizing a scoring function. All alignment algorithms require a scoring matrix in which each element is the score of aligning one character (amino acids for the case of proteins) with another. One sensible way of scoring a particular alignment is to compare the probability that the sequences are aligned by reasons of common ancestry with the probability that the alignment arose by chance. To compute this probability, we need a model of evolution. A Markovian model of evolution will be used to compute the probability that the alignment arose by reasons of common ancestry while the product of the database frequencies of the aligned amino acids will be used as the probability of alignment by chance.

Markovian model of evolution

     The Markovian model of evolution is a simple yet powerful and widely accepted model of evolution. The following assumptions are inherent in the use of a Markovian model:

-Neighbor Independence - Each symbol mutates randomly and independently of each other, i.e. the mutation of one amino acid is completely uncoupled from that of its neighbors.
-Positional Independence - The probability of mutating from amino acid i (Ai) to amino acid j (Aj) depends only on Ai and Aj. A mutation from T to S in one part of the sequence has the same probability of occurence as a mutation from T to S in another part of the sequence.
-History Independence - A Markovian model is memoryless. The probability of mutation at each site only depends on the present state (and not on its history).

     This model is, of course, an approximation. Real proteins adopt three-dimensional conformations where amino acids distant in the sequence come in contact and therefore interact. Thus, residues in a protein sequence need not undergo substitutions independent of substitutions at other positions in the protein. Likewise, biological function constrains the types of amino acid substitutions that are acceptable at difference positions. Therefore, amino acids need not suffer mutation independently, either in sequence or in time. It is well known that amino acids near an active site are more conserved than expected under the Markov model. Back mutations are also more probable than the corresponding mutation. For example if we have a F -> G -> F mutation, the G -> F mutation is more probable than a random G-> F mutation because we know that at one point in time the F was already accepted by natural selection (the protein was working with the F in the first place so mutating back to F has a high probability of not killing the organism). Protein evolution is not Markovian but as is often the case in biology, nature is too complex for us to model exactly. Therefore we use a Markovian model of evolution.

     The Markovian model of mutation is usually combined with a model for insertion deletion events.

Initial Alignments

     In the bio-recipe "Unbiased selection of sample alignments", we show how to compute an unbiased set of alignments between closely related sequences (PAM distance 40 to 80) from the SwissProt database. We shall use that set of alignments to count mutations between pairs of AA, paving the way to the scoring matrix.

If you want to try out this bio-recipe, you have to download SwissProt.Z and SampleAls.drw and change the pathnames in the following code to fit your system.

CreateDayMatrices();
SwissProt := '/home/darwin/Repositories/teaching/bio-recipes/Dayhoff/SwissProt.Z':
ReadDb(SwissProt);
CreateDayMatrices();
Reading 169638448 characters from file /home/darwin/Repositories/teaching/bio-recipes/Dayhoff/SwissProt.Z
Pre-processing input (peptides)
163235 sequences within 163235 entries considered
Peptide file(/home/darwin/Repositories/teaching/bio-recipes/Dayhoff/SwissProt.Z(
169638448), 163235 entries, 59631787 aminoacids)

     Wait a minute! These sequences were aligned using the Dayhoff matrices, the very scoring matrices we strive for! Actually, if we didn't have alignments, we would start with alignments computed using a very basic scoring function, say, the identity matrix, count the mutations, compute a new, better scoring function and iterate until convergence. When working with closely related sequences, the process converges in just a few steps. Here, we are going to do only one step and start from the alignments obtained in the aforementioned bio-recipe:

ReadProgram( '/home/darwin/Repositories/teaching/bio-recipes/Dayhoff/SampleAls.drw' );
length(SampleAl);
333

Computing the Count matrix

     First we construct the count matrix by looping through all alignments and counting matches and mismatches in a 20x20 matrix. The matches are tallied as a 1 in the appropriate diagonal matrix element. For a mismatch between Ai and Aj, we don't know which amino acid mutated into which, so we count 1/2 in element ij and 1/2 in element ji.

CountMatrix := CreateArray(1..20,1..20,0):
for i to length(SampleAl) do
   # we use the DynProgStrings function as handle
   s1 := DynProgStrings(SampleAl[i])[2]:
   s2 := DynProgStrings(SampleAl[i])[3]:
   for j to length(s1) do
     # we convert the one letter code to integers
     k1 := AToInt(s1[j]); k2 := AToInt(s2[j]);
     # if k = 0, we have most likely a gap, if k = 21, we 
     # have an missing AA in the sequence (an "X")
     if k1 > 0 and k1 < 21 and k2 > 0 and k2 < 21 then
       if k1 = k2 then
         CountMatrix[k1,k2] := CountMatrix[k1,k2] + 1;
       else
         CountMatrix[k1,k2] := CountMatrix[k1,k2] + 1/2;
         CountMatrix[k2,k1] := CountMatrix[k2,k1] + 1/2;
       fi
     fi
   od
od:
print(CountMatrix);
 4372  121  113  162   96  140  324  387   40  136  212  219   72   50  213  596  300    6   39  428
  121 2748  100   70   20  188  170   88   69   48   85  679   38   26   46  129  110   10   30   59
  113  100 1727  322   16   92  166  190   89   37   42  209   17   18   38  207  160    4   40   45
  162   70  322 3092    8  127  732  154   68   18   36  176   11   14   67  204  120    4   24   28
   96   20   16    8  680    6    6   20    6   30   30   12   10   22    6   61   54    7   16   83
  140  188   92  127    6 1367  346   58   70   35  100  310   52   18   48  128  103    6   30   66
  324  170  166  732    6  346 3378  138   63   40   68  411   29   13   93  212  192    6   28  104
  387   88  190  154   20   58  138 5788   30   19   36  136   14   17   46  230   78    8   12   40
   40   69   89   68    6   70   63   30 1059   14   39   92   16   54   34   48   40   13   96   27
  136   48   37   18   30   35   40   19   14 3217  858   72  198  144   24   55  156   12   37 1300
  212   85   42   36   30  100   68   36   39  858 5061  124  410  331   62  104  133   20   92  593
  219  679  209  176   12  310  411  136   92   72  124 3054   48   23   84  216  172    4   32   84
   72   38   17   11   10   52   29   14   16  198  410   48  923   82   12   38   64    5   24  134
   50   26   18   14   22   18   13   17   54  144  331   23   82 2191   14   38   39   59  367  101
  213   46   38   67    6   48   93   46   34   24   62   84   12   14 2757  147   66    2   10   54
  596  129  207  204   61  128  212  230   48   55  104  216   38   38  147 2326  490   13   28  100
  300  110  160  120   54  103  192   78   40  156  133  172   64   39   66  490 2808    4   31  299
    6   10    4    4    7    6    6    8   13   12   20    4    5   59    2   13    4  582   48   14
   39   30   40   24   16   30   28   12   96   37   92   32   24  367   10   28   31   48 1612   42
  428   59   45   28   83   66  104   40   27 1300  593   84  134  101   54  100  299   14   42 3784

Computing a 1-PAM mutation matrix

     The transition probabilities between amino acids are described by a 20x20 mutation matrix which describes a particular evolutionary distance and is denoted by M with

M[j,i] = Pr{AA i -> AA j}

     We are now going to compute a mutation matrix describing an amount of evolution in which, on average, 1% of the AA in a given sequence changes. This matrix is also known as the 1-PAM (for "Point Accepted Mutations", an accepted mutation being a mutation that survives in the population) mutation matrix. We want to compute the transition probabilities for each AA. So far, we have counted the number of transitions in our sample. We must now normalize each column so that their sum is equal to 1:

N := CreateArray(1..20,1..20,0):
for i to 20 do
  N[i,i] := 1/sum(CountMatrix[i]):
od:
MutationMatrix := CountMatrix*N:
print(MutationMatrix);
 0.54 0.03 0.03 0.03 0.08 0.04 0.05 0.05 0.02 0.02 0.03 0.04 0.03 0.01 0.06 0.11 0.06 0.01 0.01 0.06
 0.02 0.57 0.03 0.01 0.02 0.06 0.03 0.01 0.04 0.01 0.01 0.11 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01
 0.01 0.02 0.48 0.06 0.01 0.03 0.03 0.03 0.05 0.01 0.01 0.03 0.01 0.00 0.01 0.04 0.03 0.00 0.02 0.01
 0.02 0.01 0.09 0.57 0.01 0.04 0.11 0.02 0.03 0.00 0.00 0.03 0.01 0.00 0.02 0.04 0.02 0.00 0.01 0.00
 0.01 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01
 0.02 0.04 0.03 0.02 0.01 0.42 0.05 0.01 0.04 0.01 0.01 0.05 0.02 0.00 0.01 0.02 0.02 0.01 0.01 0.01
 0.04 0.04 0.05 0.13 0.01 0.11 0.52 0.02 0.03 0.01 0.01 0.07 0.01 0.00 0.02 0.04 0.04 0.01 0.01 0.01
 0.05 0.02 0.05 0.03 0.02 0.02 0.02 0.77 0.02 0.00 0.00 0.02 0.01 0.00 0.01 0.04 0.01 0.01 0.00 0.01
 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.00 0.54 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.04 0.00
 0.02 0.01 0.01 0.00 0.03 0.01 0.01 0.00 0.01 0.50 0.10 0.01 0.09 0.04 0.01 0.01 0.03 0.02 0.01 0.18
 0.03 0.02 0.01 0.01 0.03 0.03 0.01 0.00 0.02 0.13 0.60 0.02 0.19 0.09 0.02 0.02 0.02 0.02 0.03 0.08
 0.03 0.14 0.06 0.03 0.01 0.09 0.06 0.02 0.05 0.01 0.01 0.50 0.02 0.01 0.02 0.04 0.03 0.01 0.01 0.01
 0.01 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.03 0.05 0.01 0.42 0.02 0.00 0.01 0.01 0.01 0.01 0.02
 0.01 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.03 0.02 0.04 0.00 0.04 0.61 0.00 0.01 0.01 0.07 0.14 0.01
 0.03 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.00 0.72 0.03 0.01 0.00 0.00 0.01
 0.07 0.03 0.06 0.04 0.05 0.04 0.03 0.03 0.02 0.01 0.01 0.04 0.02 0.01 0.04 0.43 0.09 0.02 0.01 0.01
 0.04 0.02 0.04 0.02 0.04 0.03 0.03 0.01 0.02 0.02 0.02 0.03 0.03 0.01 0.02 0.09 0.52 0.01 0.01 0.04
 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.71 0.02 0.00
 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.05 0.01 0.01 0.01 0.01 0.10 0.00 0.01 0.01 0.06 0.61 0.01
 0.05 0.01 0.01 0.01 0.07 0.02 0.02 0.01 0.01 0.20 0.07 0.01 0.06 0.03 0.01 0.02 0.06 0.02 0.02 0.51

     The mutation matrix describes the mutations observed in our sample. Let us compute the average percentage of AA mutation, that is, average change. To do this, we first need to compute the AA frequencies.

Freq := CreateArray(1..20,0):
Tot := sum(sum(CountMatrix)):
for i to 20 do
  Freq[i] := sum(CountMatrix[i])/Tot:
od:
print(Freq);
[0.08477395, 0.05103334, 0.03837665, 0.05740129, 0.01256165, 0.03471746, 
0.06883297, 0.07907659, 0.02077239, 0.06813598, 0.08906677, 0.06501537, 
0.02318017, 0.03823936, 0.04036729, 0.05668318, 0.05721648, 0.00871765, 
0.02785317, 0.07797831]
PercentageMutation := 100 * sum(Freq[i] * (1 - MutationMatrix[i,i]),i=1..20);
PercentageMutation := 44.5302

     Remember that we want to calculate the 1-PAM matrix. From the definition, we know that the percentage of mutations and the PAM distance coincide at a PAM distance of 1. As the PAM distance increases, there is a departure between the two: the percentage of mutations incrases more slowly. This is intuitive in that the probability of a mutation reoccuring at a given site increases with an increasing amount of mutations. In addition, there is a certain probability that amino acids will mutate back to their original state. The formal relationship between our matrix and the 1-PAM matrix is the following:

                     k
MutationMatrix = PAM1

     Hence

                     (1/k)
PAM1 = MutationMatrix

     Or

           ln(MutationMatrix)
ln(PAM1) = ------------------
                   k

     We can solve this formula numerically using an iterative process where k - that is the PAM distance - is approximated at each step by the percentage of mutations.

PAM1 := MutationMatrix:
lnPAM1 := ln(MutationMatrix):
k := 1:
RateMutation := sum(Freq[i] * (1 - PAM1[i,i]), i= 1..20):
iter := 0:

# The following loop goes until the difference reach the computer's
# precision.
while abs(RateMutation - 0.01) > DBL_EPSILON do
    iter := iter + 1;
    k:= k * RateMutation * 100:
    lnPAM1 := lnPAM1 / (RateMutation * 100):
    PAM1 := exp(lnPAM1):
    RateMutation := sum(Freq[i] * (1 - PAM1[i,i]), i= 1..20);
    printf('After %d iteration(s), k=%f, RateMutation=%f
', iter, k, RateMutation);
od:
After 1 iteration(s), k=44.530219, RateMutation=0.014324
After 2 iteration(s), k=63.785069, RateMutation=0.010027
After 3 iteration(s), k=63.959878, RateMutation=0.010000
After 4 iteration(s), k=63.960985, RateMutation=0.010000
After 5 iteration(s), k=63.960992, RateMutation=0.010000
After 6 iteration(s), k=63.960992, RateMutation=0.010000
After 7 iteration(s), k=63.960992, RateMutation=0.010000
After 8 iteration(s), k=63.960992, RateMutation=0.010000

     Here are the 10 first rows and columns of the PAM1 matrix

PrintMatrix(transpose(transpose(PAM1[1..10])[1..10]),'% .5f ');
 0.99002  0.00040  0.00048  0.00048  0.00193  0.00090  0.00115  0.00112  0.00031  0.00018 
 0.00024  0.99072  0.00052  0.00013  0.00035  0.00140  0.00045  0.00019  0.00075  0.00011 
 0.00022  0.00039  0.98805  0.00162  0.00028  0.00065  0.00046  0.00057  0.00121  0.00011 
 0.00033  0.00015  0.00242  0.99064  0.00006  0.00071  0.00311  0.00036  0.00071  0.00002 
 0.00029  0.00009  0.00009  0.00001  0.99123  0.00001 -0.00001  0.00004  0.00005  0.00006 
 0.00037  0.00095  0.00059  0.00043  0.00003  0.98585  0.00157  0.00011  0.00095  0.00004 
 0.00094  0.00060  0.00083  0.00373 -0.00005  0.00312  0.98900  0.00029  0.00057  0.00004 
 0.00104  0.00030  0.00117  0.00050  0.00027  0.00026  0.00034  0.99589  0.00024  0.00002 
 0.00008  0.00031  0.00065  0.00026  0.00008  0.00057  0.00017  0.00006  0.99023  0.00001 
 0.00015  0.00014  0.00019  0.00003  0.00032  0.00008  0.00004  0.00002  0.00005  0.98765 

     We observe that the PAM value k of our original matrix is 63.9610, which is rather good news, knowing that we constructed it using alignments of distance 40 to 80 PAM.

     But the presence of negative transition probabilities in our 1-PAM matrix is rather disturbing. Obviously, our dataset has trouble fitting to the Markovian model. To some extent, the Markovian model has some limitations, but mainly, our sample is too small: looking back at our count matrix, we see that the negative probabilities correspond to cases with very few counts. It turns out that taking larger samples generally solves the negative values problem. In our case, we are going to replace the negative non-diagonal elements in the log matrix with 0 and remove the difference from the diagonal so that the sum of all probabilities for each AA still adds to 0.

for i to 20 do
  for j to 20 do
    if lnPAM1[i,j] < 0 and j <> i then
      diff:= 0 - lnPAM1[i,j];
      lnPAM1[i,j] := lnPAM1[i,j] + diff;
      lnPAM1[j,j] := lnPAM1[j,j] - diff;
    fi:
  od:
od:
PAM1 := exp(lnPAM1):
PrintMatrix(transpose(transpose(PAM1[1..10])[1..10]),'% .5f ');
 0.99002  0.00040  0.00048  0.00048  0.00193  0.00090  0.00115  0.00112  0.00031  0.00018 
 0.00024  0.99072  0.00052  0.00013  0.00035  0.00140  0.00045  0.00019  0.00075  0.00011 
 0.00022  0.00039  0.98805  0.00162  0.00028  0.00065  0.00046  0.00057  0.00121  0.00011 
 0.00033  0.00015  0.00242  0.99064  0.00006  0.00071  0.00311  0.00036  0.00071  0.00002 
 0.00029  0.00009  0.00009  0.00001  0.99118  0.00001  0.00000  0.00004  0.00005  0.00006 
 0.00037  0.00095  0.00059  0.00043  0.00003  0.98585  0.00157  0.00011  0.00095  0.00004 
 0.00094  0.00060  0.00083  0.00373  0.00000  0.00312  0.98899  0.00029  0.00057  0.00004 
 0.00104  0.00030  0.00117  0.00050  0.00027  0.00026  0.00034  0.99589  0.00024  0.00002 
 0.00008  0.00031  0.00065  0.00026  0.00008  0.00057  0.00017  0.00006  0.99023  0.00001 
 0.00015  0.00014  0.00019  0.00003  0.00032  0.00008  0.00004  0.00002  0.00005  0.98765 

     To compute n-PAM matrices, we multiply the PAM1 matrix through itself N times, which is most efficiently achieved through n additions in log space.

Computing Dayhoff matrices from PAM mutation matrices and AA frequency

     In the introduction, we motivated the quest for mutation matrices through the need of a method to quantify the evolutionary relationship of two AA. We now have such matrices. Remember that we are interested in the ratio

P("alignment i and j arose through evolution")
----------------------------------------------
    P("alignment i and j arose by chance")

     Let us now assume that the sequences of i and j have a PAM distance of 250. The probability that i and j and have evolved from a common ancestor is the following:

            -----
             \
Numerator =   )   f[x] Pr(x -> i) Pr(x -> j)
             /
            -----
              x
            -----
             \           125          125
Numerator =   )   f[x] (M   )[i, x] (M   )[j, x]
             /
            -----
              x

     We know from the construction of the mutation matrices that

       k                 k
f[i] (M )[j, i] = f[j] (M )[i, j]

     Hence

            -----
             \      125               125
Numerator =   )   (M   )[i, x] f[x] (M   )[j, x]
             /
            -----
              x
            -----
             \      125               125
Numerator =   )   (M   )[i, x] f[j] (M   )[x, j]
             /
            -----
              x
                  250
Numerator = f[j](M   )[i, j]
                  250
Numerator = f[i](M   )[j, i]

     Knowing that the probability that the alignments i and j arose by chance is the product of the frequencies, our ratio is now:

                                                       250
P("alignment i and j arose through evolution")   f[i](M   )[j, i]
---------------------------------------------- = ----------------
    P("alignment i and j arose by chance")          f[i] f[j]

     We can now compute the alignment that maximizes the product of these ratios for each position in the alignment, through dynamic programming for instance. To speed up the process, we can maximize the sum of the logs. And to speed it up even more, we can precompute and store the values of all pairs of AA, therefore computing the *Dayhoff Matrix* (in honor of Margaret O. Dayhoff, who computed them first). The exact value of each cell of the 250-PAM Dayhoff Matrix is:

                     250
                   (M   )[i, j]
D[ij] = 10 log[10](------------)
                       f[i]

     So let us now compute the Dayhoff Matrix for a PAM distance of 250:

PAM250 := exp(250*lnPAM1):

Dayhoff250 := CreateArray(1..20,1..20):
for i to 20 do
  for j to 20 do
    Dayhoff250[i,j] := 10*log10(PAM250[i,j]/Freq[i]);
  od:
od:
print(Dayhoff250);
  2.7 -0.9 -0.4 -0.4  1.0 -0.2 -0.0  0.4 -1.3 -1.1 -1.3 -0.5 -1.0 -2.5  0.6  1.2  0.5 -3.4 -2.6 -0.2
 -0.9  5.0  0.4 -0.4 -1.4  1.6  0.5 -1.5  0.7 -2.8 -2.3  3.0 -1.5 -2.9 -1.4 -0.1 -0.4 -2.4 -2.0 -2.5
 -0.4  0.4  3.8  2.2 -1.0  0.7  1.0  0.6  1.3 -3.1 -3.0  0.9 -2.3 -2.9 -1.1  0.8  0.4 -3.1 -1.4 -2.6
 -0.4 -0.4  2.2  4.8 -2.4  1.0  2.9 -0.4  0.4 -4.5 -4.1  0.6 -3.3 -4.4 -0.8  0.5 -0.3 -4.3 -2.9 -3.6
  1.0 -1.4 -1.0 -2.4  9.8 -1.7 -2.1 -1.8 -1.5  0.1 -0.7 -1.8 -0.5 -0.2 -2.2  0.7  0.8  0.7 -0.2  1.0
 -0.2  1.6  0.7  1.0 -1.7  3.0  1.7 -1.5  0.9 -2.2 -1.7  1.7 -0.8 -2.5 -0.7  0.3 -0.0 -2.6 -1.6 -1.8
 -0.0  0.5  1.0  2.9 -2.1  1.7  3.4 -1.0  0.1 -3.4 -3.2  1.2 -2.4 -4.1 -0.6  0.4 -0.1 -3.9 -2.9 -2.5
  0.4 -1.5  0.6 -0.4 -1.8 -1.5 -1.0  7.0 -1.9 -5.4 -5.1 -1.1 -4.2 -5.4 -2.2  0.2 -1.7 -4.3 -4.8 -4.2
 -1.3  0.7  1.3  0.4 -1.5  0.9  0.1 -1.9  7.1 -2.7 -1.8  0.6 -1.3  1.1 -0.6 -0.5 -0.7  1.4  3.0 -2.4
 -1.1 -2.8 -3.1 -4.5  0.1 -2.2 -3.4 -5.4 -2.7  4.1  2.8 -2.7  2.3  0.8 -3.4 -2.2 -0.5 -1.4 -1.0  3.4
 -1.3 -2.3 -3.0 -4.1 -0.7 -1.7 -3.2 -5.1 -1.8  2.8  4.0 -2.3  3.0  2.0 -2.7 -2.1 -1.1 -0.7  0.2  2.0
 -0.5  3.0  0.9  0.6 -1.8  1.7  1.2 -1.1  0.6 -2.7 -2.3  3.2 -1.5 -3.3 -0.8  0.2 -0.1 -3.5 -2.3 -2.3
 -1.0 -1.5 -2.3 -3.3 -0.5 -0.8 -2.4 -4.2 -1.3  2.3  3.0 -1.5  4.4  1.6 -2.7 -1.5 -0.6 -0.8  0.1  1.6
 -2.5 -2.9 -2.9 -4.4 -0.2 -2.5 -4.1 -5.4  1.1  0.8  2.0 -3.3  1.6  7.1 -4.0 -2.7 -2.1  4.8  6.0  0.0
  0.6 -1.4 -1.1 -0.8 -2.2 -0.7 -0.6 -2.2 -0.6 -3.4 -2.7 -0.8 -2.7 -4.0  8.6  0.5 -0.8 -5.1 -3.7 -2.4
  1.2 -0.1  0.8  0.5  0.7  0.3  0.4  0.2 -0.5 -2.2 -2.1  0.2 -1.5 -2.7  0.5  2.3  1.5 -2.4 -2.3 -1.4
  0.5 -0.4  0.4 -0.3  0.8 -0.0 -0.1 -1.7 -0.7 -0.5 -1.1 -0.1 -0.6 -2.1 -0.8  1.5  3.3 -3.2 -2.1  0.1
 -3.4 -2.4 -3.1 -4.3  0.7 -2.6 -3.9 -4.3  1.4 -1.4 -0.7 -3.5 -0.8  4.8 -5.1 -2.4 -3.2 14.8  5.4 -1.8
 -2.6 -2.0 -1.4 -2.9 -0.2 -1.6 -2.9 -4.8  3.0 -1.0  0.2 -2.3  0.1  6.0 -3.7 -2.3 -2.1  5.4  8.4 -1.5
 -0.2 -2.5 -2.6 -3.6  1.0 -1.8 -2.5 -4.2 -2.4  3.4  2.0 -2.3  1.6  0.0 -2.4 -1.4  0.1 -1.8 -1.5  3.5

Computing the PAM mutation matrices and AA frequencies from the Dayhoff matrices

     In some situations, we might like to reconstruct the mutation matrix and AA frequencies array from a Dayhoff matrix. Let us try to get the PAM250 mutation matrix from the corresponding Dayhoff matrix that we just calculated in the previous section. Remember the way we constructed the Dayhoff matrix:

                     M[i, j]
D[i, j] = 10 log[10](-------)
                      f[i]

     Hence we have the following relationship:

M[i, j]     (1/10 D[i, j] - 1/10 D[i, x])
------- = 10
M[i, x]

     For each row i, we can calculate the value of each cell i,j up to a scaling factor M[i,x]. Furthermore, we know that each column of the mutation matrix should sum up to 1. Combining these two facts, we can reconstitute the mutation matrix. So let us proceed step by step. For each row, we pose that sum(M[i,1], i=1..20) = 1 , and we compute the other cells from that result:

E := CreateArray(1..20,1..20):
for A to 20 do
  for B to 20 do
    E[B,A] := 10 ^ ((Dayhoff250[B,A]-Dayhoff250[B,1]) / 10)
  od;
od:
print(E);
  1.0  0.4  0.5  0.5  0.7  0.5  0.5  0.6  0.4  0.4  0.4  0.5  0.4  0.3  0.6  0.7  0.6  0.2  0.3  0.5
  1.0  3.9  1.3  1.1  0.9  1.8  1.4  0.9  1.4  0.6  0.7  2.4  0.9  0.6  0.9  1.2  1.1  0.7  0.8  0.7
  1.0  1.2  2.6  1.8  0.9  1.3  1.4  1.3  1.5  0.5  0.5  1.3  0.6  0.6  0.8  1.3  1.2  0.5  0.8  0.6
  1.0  1.0  1.8  3.3  0.6  1.4  2.2  1.0  1.2  0.4  0.4  1.3  0.5  0.4  0.9  1.2  1.0  0.4  0.6  0.5
  1.0  0.6  0.6  0.5  7.5  0.5  0.5  0.5  0.6  0.8  0.7  0.5  0.7  0.8  0.5  0.9  0.9  0.9  0.7  1.0
  1.0  1.5  1.2  1.3  0.7  2.1  1.6  0.8  1.3  0.6  0.7  1.6  0.9  0.6  0.9  1.1  1.1  0.6  0.7  0.7
  1.0  1.1  1.3  2.0  0.6  1.5  2.2  0.8  1.0  0.5  0.5  1.3  0.6  0.4  0.9  1.1  1.0  0.4  0.5  0.6
  1.0  0.6  1.1  0.8  0.6  0.6  0.7  4.5  0.6  0.3  0.3  0.7  0.3  0.3  0.5  0.9  0.6  0.3  0.3  0.3
  1.0  1.6  1.8  1.5  1.0  1.7  1.4  0.9  6.9  0.7  0.9  1.6  1.0  1.7  1.2  1.2  1.1  1.9  2.7  0.8
  1.0  0.7  0.6  0.5  1.3  0.8  0.6  0.4  0.7  3.2  2.4  0.7  2.2  1.6  0.6  0.8  1.1  0.9  1.0  2.8
  1.0  0.8  0.7  0.5  1.2  0.9  0.7  0.4  0.9  2.6  3.4  0.8  2.7  2.1  0.7  0.8  1.1  1.2  1.4  2.1
  1.0  2.2  1.4  1.3  0.7  1.7  1.5  0.9  1.3  0.6  0.7  2.3  0.8  0.5  0.9  1.2  1.1  0.5  0.7  0.7
  1.0  0.9  0.7  0.6  1.1  1.0  0.7  0.5  0.9  2.2  2.5  0.9  3.5  1.8  0.7  0.9  1.1  1.0  1.3  1.8
  1.0  0.9  0.9  0.6  1.7  1.0  0.7  0.5  2.3  2.2  2.8  0.8  2.6  9.1  0.7  1.0  1.1  5.4  7.1  1.8
  1.0  0.6  0.7  0.7  0.5  0.8  0.8  0.5  0.8  0.4  0.5  0.7  0.5  0.4  6.4  1.0  0.7  0.3  0.4  0.5
  1.0  0.7  0.9  0.9  0.9  0.8  0.8  0.8  0.7  0.5  0.5  0.8  0.5  0.4  0.9  1.3  1.1  0.4  0.4  0.6
  1.0  0.8  1.0  0.8  1.1  0.9  0.9  0.6  0.8  0.8  0.7  0.9  0.8  0.6  0.7  1.3  1.9  0.4  0.6  0.9
  1.0  1.3  1.1  0.8  2.6  1.2  0.9  0.8  3.1  1.6  1.9  1.0  1.8  6.7  0.7  1.3  1.1 66.6  7.6  1.5
  1.0  1.1  1.3  0.9  1.7  1.3  0.9  0.6  3.6  1.4  1.9  1.1  1.8  7.1  0.8  1.1  1.1  6.2 12.4  1.3
  1.0  0.6  0.6  0.5  1.3  0.7  0.6  0.4  0.6  2.3  1.6  0.6  1.5  1.0  0.6  0.8  1.1  0.7  0.7  2.3

     We now want to find for each row a scaling factor such that each column adds to 1. It is a system of 20 linear equations with 20 unknowns that can be easily solved through Gaussian elimination:

w := GaussElim(transpose(E),[seq(1,i=1..20)]);
w := [0.1563, 0.04162567, 0.03531554, 0.05183259, 0.01594234, 0.03277879, 
0.06862222, 0.08690376, 0.01535841, 0.05327896, 0.06549119, 0.05848042, 
0.01838480, 0.02142322, 0.04589026, 0.07465867, 0.06348041, 0.00395498, 
0.01542346, 0.07489430]

     Finally multiply each line by the appropriate weight:

for i to 20 do E[i] := E[i]*w[i] od:
print(E);
 0.16 0.07 0.08 0.08 0.11 0.08 0.08 0.09 0.06 0.07 0.06 0.08 0.07 0.05 0.10 0.11 0.09 0.04 0.05 0.08
 0.04 0.16 0.06 0.05 0.04 0.07 0.06 0.04 0.06 0.03 0.03 0.10 0.04 0.03 0.04 0.05 0.05 0.03 0.03 0.03
 0.04 0.04 0.09 0.06 0.03 0.04 0.05 0.04 0.05 0.02 0.02 0.05 0.02 0.02 0.03 0.05 0.04 0.02 0.03 0.02
 0.05 0.05 0.10 0.17 0.03 0.07 0.11 0.05 0.06 0.02 0.02 0.07 0.03 0.02 0.05 0.06 0.05 0.02 0.03 0.03
 0.02 0.01 0.01 0.01 0.12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02
 0.03 0.05 0.04 0.04 0.02 0.07 0.05 0.02 0.04 0.02 0.02 0.05 0.03 0.02 0.03 0.04 0.03 0.02 0.02 0.02
 0.07 0.08 0.09 0.13 0.04 0.10 0.15 0.05 0.07 0.03 0.03 0.09 0.04 0.03 0.06 0.07 0.07 0.03 0.04 0.04
 0.09 0.06 0.09 0.07 0.05 0.06 0.06 0.39 0.05 0.02 0.02 0.06 0.03 0.02 0.05 0.08 0.05 0.03 0.03 0.03
 0.02 0.02 0.03 0.02 0.01 0.03 0.02 0.01 0.11 0.01 0.01 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.04 0.01
 0.05 0.04 0.03 0.02 0.07 0.04 0.03 0.02 0.04 0.17 0.13 0.04 0.12 0.08 0.03 0.04 0.06 0.05 0.05 0.15
 0.07 0.05 0.04 0.03 0.08 0.06 0.04 0.03 0.06 0.17 0.22 0.05 0.18 0.14 0.05 0.05 0.07 0.08 0.09 0.14
 0.06 0.13 0.08 0.07 0.04 0.10 0.09 0.05 0.08 0.04 0.04 0.14 0.05 0.03 0.05 0.07 0.06 0.03 0.04 0.04
 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.04 0.05 0.02 0.06 0.03 0.01 0.02 0.02 0.02 0.02 0.03
 0.02 0.02 0.02 0.01 0.04 0.02 0.01 0.01 0.05 0.05 0.06 0.02 0.06 0.20 0.02 0.02 0.02 0.12 0.15 0.04
 0.05 0.03 0.03 0.03 0.02 0.03 0.04 0.02 0.04 0.02 0.02 0.03 0.02 0.02 0.29 0.05 0.03 0.01 0.02 0.02
 0.07 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.05 0.03 0.03 0.06 0.04 0.03 0.06 0.10 0.08 0.03 0.03 0.04
 0.06 0.05 0.06 0.05 0.07 0.06 0.06 0.04 0.05 0.05 0.04 0.06 0.05 0.04 0.05 0.08 0.12 0.03 0.04 0.06
 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.03 0.00 0.01 0.00 0.26 0.03 0.01
 0.02 0.02 0.02 0.01 0.03 0.02 0.01 0.01 0.06 0.02 0.03 0.02 0.03 0.11 0.01 0.02 0.02 0.10 0.19 0.02
 0.07 0.04 0.04 0.03 0.10 0.05 0.04 0.03 0.04 0.17 0.12 0.05 0.11 0.08 0.04 0.06 0.08 0.05 0.06 0.18

Now see how well that compares to the matrix we started from in the last section:

print(PAM250);
 0.16 0.07 0.08 0.08 0.11 0.08 0.08 0.09 0.06 0.07 0.06 0.08 0.07 0.05 0.10 0.11 0.09 0.04 0.05 0.08
 0.04 0.16 0.06 0.05 0.04 0.07 0.06 0.04 0.06 0.03 0.03 0.10 0.04 0.03 0.04 0.05 0.05 0.03 0.03 0.03
 0.04 0.04 0.09 0.06 0.03 0.04 0.05 0.04 0.05 0.02 0.02 0.05 0.02 0.02 0.03 0.05 0.04 0.02 0.03 0.02
 0.05 0.05 0.10 0.17 0.03 0.07 0.11 0.05 0.06 0.02 0.02 0.07 0.03 0.02 0.05 0.06 0.05 0.02 0.03 0.03
 0.02 0.01 0.01 0.01 0.12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02
 0.03 0.05 0.04 0.04 0.02 0.07 0.05 0.02 0.04 0.02 0.02 0.05 0.03 0.02 0.03 0.04 0.03 0.02 0.02 0.02
 0.07 0.08 0.09 0.13 0.04 0.10 0.15 0.05 0.07 0.03 0.03 0.09 0.04 0.03 0.06 0.07 0.07 0.03 0.04 0.04
 0.09 0.06 0.09 0.07 0.05 0.06 0.06 0.39 0.05 0.02 0.02 0.06 0.03 0.02 0.05 0.08 0.05 0.03 0.03 0.03
 0.02 0.02 0.03 0.02 0.01 0.03 0.02 0.01 0.11 0.01 0.01 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.04 0.01
 0.05 0.04 0.03 0.02 0.07 0.04 0.03 0.02 0.04 0.17 0.13 0.04 0.12 0.08 0.03 0.04 0.06 0.05 0.05 0.15
 0.07 0.05 0.04 0.03 0.08 0.06 0.04 0.03 0.06 0.17 0.22 0.05 0.18 0.14 0.05 0.05 0.07 0.08 0.09 0.14
 0.06 0.13 0.08 0.07 0.04 0.10 0.09 0.05 0.08 0.04 0.04 0.14 0.05 0.03 0.05 0.07 0.06 0.03 0.04 0.04
 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.04 0.05 0.02 0.06 0.03 0.01 0.02 0.02 0.02 0.02 0.03
 0.02 0.02 0.02 0.01 0.04 0.02 0.01 0.01 0.05 0.05 0.06 0.02 0.06 0.20 0.02 0.02 0.02 0.12 0.15 0.04
 0.05 0.03 0.03 0.03 0.02 0.03 0.04 0.02 0.04 0.02 0.02 0.03 0.02 0.02 0.29 0.05 0.03 0.01 0.02 0.02
 0.07 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.05 0.03 0.03 0.06 0.04 0.03 0.06 0.10 0.08 0.03 0.03 0.04
 0.06 0.05 0.06 0.05 0.07 0.06 0.06 0.04 0.05 0.05 0.04 0.06 0.05 0.04 0.05 0.08 0.12 0.03 0.04 0.06
 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.03 0.00 0.01 0.00 0.26 0.03 0.01
 0.02 0.02 0.02 0.01 0.03 0.02 0.01 0.01 0.06 0.02 0.03 0.02 0.03 0.11 0.01 0.02 0.02 0.10 0.19 0.02
 0.07 0.04 0.04 0.03 0.10 0.05 0.04 0.03 0.04 0.17 0.12 0.05 0.11 0.08 0.04 0.06 0.08 0.05 0.06 0.18

Finally, we would like to calculate the AA frequencies from the mutation matrix. What do we know about it? We know that

F[i] M[i, j] = F[j] M[j, i]

The other constraint, clearly, is that all frequencies sum up to 1. Hence, we can proceed in the same fashion as above, calculating all frequencies using, say, F[1]=1, then scale the frequencies so that they add to 1:

f:= [seq( E[i,1]/E[1,i], i=1..20 )]:
f:= f/sum(f):
print(f);
[0.08477395, 0.05103334, 0.03837665, 0.05740129, 0.01256165, 0.03471746, 
0.06883297, 0.07907659, 0.02077239, 0.06813598, 0.08906677, 0.06501537, 
0.02318017, 0.03823936, 0.04036729, 0.05668318, 0.05721648, 0.00871765, 
0.02785317, 0.07797831]

which perfectly matches our original frequency array:

print(Freq);
[0.08477395, 0.05103334, 0.03837665, 0.05740129, 0.01256165, 0.03471746, 
0.06883297, 0.07907659, 0.02077239, 0.06813598, 0.08906677, 0.06501537, 
0.02318017, 0.03823936, 0.04036729, 0.05668318, 0.05721648, 0.00871765, 
0.02785317, 0.07797831]

     

Written by Christophe Dessimoz and Gina Gannarozzi, based to a large extent on material from Darwin 1.6 Tutorial as well as personal notes from Gaston Gonnet for the last part. Revision and suggestions by Adrian Schneider.

© 2011 by CBRG Group, Informatik, ETH Zurich

Index of bio-recipes

Last updated on Thu Oct 6 11:24:33 2011 by zo

!!! Dieses Dokument stammt aus dem ETH Web-Archiv und wird nicht mehr gepflegt !!!
!!! This document is stored in the ETH Web archive and is no longer maintained !!!